新闻资讯
您当前位置:新闻资讯 >> 行业新闻 >> 浏览内容
新闻资讯
联系我们
广东晶瀚光电科技有限公司 电 话:0769-82233086
传 真:0769-82233606
手 机:13650109550
联系人:李经理
地 址:中国・东莞市寮步镇金富路35号鼎昊自动化孵化园2区
紫外光不是不可见吗?五颜六色的UV LED怎么来的?
时间:2021/2/20 0:40:46  浏览:

UVB和UVC等深紫外光本身是肉眼不可见的,但很多UVC芯片都会发出肉眼可见的光线,光线呈现蓝色、紫色、白色、黄色等,出现光色不一的问题。

UV LED按照发光峰波段可划分为:UVC,波长峰值(WLP)在200-280nm波段;UVB在 280-320nm波段;UVA在320-400nm波段。其中,UVB和UVC波段的紫外光本身是肉眼不可见的,但很多UVC芯片都会发出肉眼可见的光线,光线呈现蓝色、紫色、白色、黄色等,出现光色不一的问题。这种问题在蓝绿光LED不明显,主要是因为蓝绿光LED工作状态的亮度非常高且波长变化引起的视觉光色差异较小,而在UV LED应用中非常常见甚至是无法避免的。

不过,蓝绿光LED主要应用为照明、背光源、景观等,视觉观察是评价其优劣的重要依据,而UV LED芯片多为功能性应用,评价以功能实现为依据,因此光色不一的问题并不是UV LED面临的主要问题。

但即便如此,UV LED光色不一的问题仍然需要我们对其进行深入的分析,光线颜色通常受到外延结构影响较大,以下针对UV LED的光色问题进行外延材料的机理剖析。

  视觉光色不一的直接原因就是光谱不同  

目前UVC LED主流发光波长峰值(WLP)为270nm-280nm,其光谱如图一所示,峰值最高为278nm,两边逐渐降低。长波方向,当波长达到可见光范围的380nm以上(紫色圈处),仍有一定的强度,这部分光线会被人眼接收,呈现出微弱的紫色光;如果波长达到460nm(蓝色圈处)还有一定的强度,会呈现出微弱的蓝紫光。如果蓝光区域的光强度接近甚至超过紫光区域的强度,则会呈现出微弱的蓝光。

紫外光不是不可见吗?五颜六色的UV LED怎么来的?

图一 UVC芯片光致发光谱


(一)光谱半高宽

光谱半高宽影响芯片发光颜色主要是UVA波段。蓝绿光均为可见光且亮度非常高,UVC和UVB光线不可见,UVA则是有一部分光为可见光,可见光的比例很大程度上影响了其发光颜色,因此UVA波段光谱半宽对于发光颜色影响更加明显,如图二(a)所示,半高宽(FMHW)较小,发光颜色会偏紫;图二(b)的光谱FMHW较大,发光颜色会偏蓝。

同样,FMHW的大小也会体现在主波长数据上,大部分情况下,FMHW越大,主波长也越大,发光颜色会偏长波长。

紫外光不是不可见吗?五颜六色的UV LED怎么来的?

a 光谱半宽小,发光颜色偏紫

紫外光不是不可见吗?五颜六色的UV LED怎么来的?

b 光谱半宽大,发光颜色偏蓝

图二 不同光谱半宽的光致发光谱

量子阱的阱宽是决定发光光谱的其中一个因素,阱宽波动导致光谱半宽大。工艺过程控制出现偏差会引起阱宽的变化,如温度、MO源饱和蒸气压、III族元素组分等因素变化都会引起生长速率的变化,从而导致阱宽出现变化。如果材料中不同位置的阱宽差异明显,或同一位置不同外延层的阱宽差异明显,就会出现光谱半宽大的问题。

紫外光不是不可见吗?五颜六色的UV LED怎么来的?

图三 阱宽波动透射电镜图片


此外,阱层掺杂、极化场等也会引起光谱半宽大的问题。

(二)深能级发光

III族/V族化合物制作的LED产品,蓝绿光LED、紫光LED、UV LED等芯片光谱中,黄光带是一直存在的,其波峰在550nm左右,强度很低,但是人眼对550nm波长的感官最强烈,因此黄光带很容易被人眼捕捉到。UVC产品工作波长肉眼不可见,因此黄光带会更加容易被捕捉到,使产品呈现出微弱的黄光。黄光带的来源一直没有明确的定论。

紫外光不是不可见吗?五颜六色的UV LED怎么来的?

图四 UVA芯片的黄光带光谱


肉眼感知的黄光强度与芯片的亮度没有绝对的对应关系。芯片的发光越强,黄光带受到短波长激发而发出的光线也越强;同时黄光带吸收掉过多的工作波长。

(重点):如果黄光带强度较高,芯片发光颜色会直接显示黄色;如果黄光带强度较低,远低于光谱中的蓝光和紫光部分,那么黄光会与蓝光紫光混合发出白色的光线。

以上这种因光谱导致的发光颜色差异大都可以体现在主波长数据上,发光颜色为紫色的芯片主波长应在430nm以下,发光颜色为蓝色的芯片主波长应在450nm以上,发光颜色偏黄的主波长可能达到500nm。

很多研究将黄光带的来源归咎于深能级,而其中Ga空位、Mg、C等受到关注最多[1,2]。比如C污染,因生长过程中使用的金属源为有机物,因此不可避免会有C原子进入材料中,而这种C原子或与N原子结合,或进入间隙,形成C深能级,提供了黄光带的发光源。通过二次离子质谱(SIMS)和X射线能谱(XPS)测试分析可以看出,材料中C的密度还是很高的,达到1E17cm-3。通常情况下,C比例较大的材料,黄光带更加明显。

紫外光不是不可见吗?五颜六色的UV LED怎么来的?

紫外光不是不可见吗?五颜六色的UV LED怎么来的?

图五 不同C组分材料的SIMS及EDS数据

此外,LED中亦常见与Mg掺杂有关的蓝光带发光,些研究表明p-GaN中Mg的深能级位于GaN导带底-0.2eV位置,因此光谱在390nm左右,因此会使UV LED芯片,尤其是UVC LED芯片呈现出蓝紫色的光色。

除此之外,还有一些杂质、间隙等缺陷[3-5],如Fe杂质、Ga间隙原子、H络合物、有机物分子等,也包括一部分C间隙或者络合物,这些缺陷中大部分是常规的测试分析难以捕捉到的,但同时也是MOCVD生长过程中无法避免的。研究表明,在GaN材料中,这些缺陷形成了两个较为明显的深能级带,一个能级位于GaN导带底-0.5eV左右的位置,发光波峰在420nm-440nm之间。这种缺陷对发光颜色的影响较为明显,UV LED芯片受到这种深能级发光影响,发光颜色会呈现出蓝紫色或蓝色。另一个则位于黄光带光谱位置,被认为是引起黄光带的原因之一。

返回
关注我们
网站客服 网站客服(在线)
在线咨询 在线咨询(袁小姐)
在线咨询 在线咨询(梁小姐)
在线咨询 在线咨询(李小姐)